ProScale Conference

A method for assessing the toxicological potentials of product systems in a life cycle perspective

Brussels, 5 October 2017 Hôtel Métropole 9.30 to 17.00

APPLYING THE SAME PRINCIPLES TO ECOTOXICITY AND HUMAN TOXICITY VIA THE ENVIRONMENT?

Extending the scope of ProScale

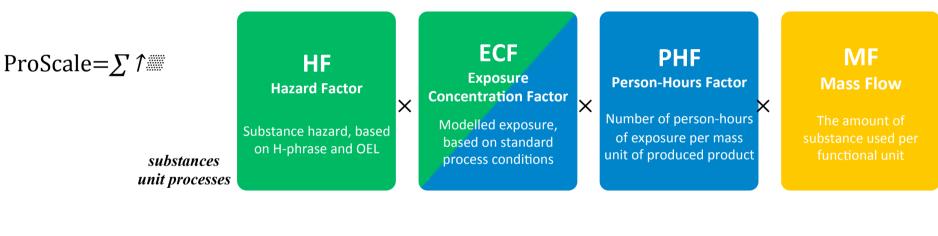
Proscale guidance Section 1.2.

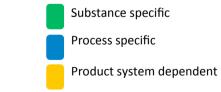
"ProScale is intended as a widely applicable method that can cover both human and eco-toxicity aspects, be applicable to any kind of products on a worldwide basis. The ProScale consortium decided to first focus on near-field human toxicity, on The method can nevertheless be extended following the same principles."

How about a tough starter on this "next step"?

Main challenge

Make it simple or make it exhaustive?


Simplify to make it "easy" to use?
→ Current limitation of UseTox?


OR

• Make it more exhaustive, but also more data-, expertise- and labour-demanding

Elements of ProScale – schematic presentation

Hazard Factor

ProScale

- Grouping according to a hazard banding approach based on GHS classifications, taking into account the route of exposure
- Modified according to OEL(-surrogate) to take into consideration potency differences

Environmental applicability?

- Which environmental compartments (≈ exposure routes)?
 - Aquatic only?
 - 2 GHS hazard classes
 - Limit and PNEC values ± available
 - Also sediment, soil, atmosphere (man via environment)?
 - Limit and PNEC values , most often derived from aquatic PNECs

Interesting source? ECETOC Task Force: Sufficiency of aquatic hazard information for environmental risk assessment

- Hazard factor: only limited number of classification classes under GHS (Aquatic Acute, Aquatic Chronic)
 - Use lowest NOEC?
 - Include persistency, bioaccumulation, mobility, ... as modifier?

Exposure Concentration Factor

ProScale

- Workers : ECETOC TRA Tier1
- Consumers: ECETOC TRA Tier 1
- Service life consumers
- End-of-life workers: ECETOC TRA Tier 1
- Input parameters/modifiers:
 - PROC- Product (sub-)category
 - Use
 - Physical state
 - Fugacity
 - Risk management measures
 - Concentration

Environmental applicability?

- Equivalent to environmental release factors for water, soil and air? To be combined with fate/fugacity models (e.g. for sediment)?
- Use of ERC, spERC and usual RMM (e.g. municipal STP) covering manufacturing to consumers (wide dispersive use)?
 What about service life, end-of-life and recycling?
- 100% bioavailability to be assumed (worst-case hypothesis)?

Person-Hours Factor

ProScale

- Production: determined by annual hours worked , annual production volume
- Use: determined by duration and amount
- Service life: determined by persons, surface, product lifetime, amount

Environmental applicability?

• No real equivalent for environment?

Mass Flow Factor

Proscale

- To take into consideration the amount of substance required for fulfilment of the functional unit
- Based on the mass fractions of inputs and outputs of the unit process

Environmental applicability?

- Same approach for environment?
- "Background levels" and other sources; not relevant for comparative LCA-like approach?

